1C31181G01 壓力飛輪

該技術(shù)在很大程度上解決了上述矢量控制的不足,并以新穎的控制思想、簡潔明了的系統(tǒng)結(jié)構(gòu)、優(yōu)良的動靜態(tài)性能得到了迅速發(fā)展。它不需要將交流電動機(jī)等效為直流電動機(jī),因而省去了矢量旋轉(zhuǎn)變換中的許多復(fù)雜計算,它不需要模仿直流電動機(jī)的控制,也不需要為解耦而簡化交流電動機(jī)的數(shù)學(xué)模型。矩陣式交一交控制方式

分類:

描述

1C31181G01 壓力飛輪

矢量控制(VC)方式
矢量控制變頻調(diào)速的做法是將異步電動機(jī)在三相坐標(biāo)系下的定子電流la、lb、lc、通過三相- 二相變換,等效成兩相靜上坐標(biāo)系下的交流電流la1lb1,再通過按轉(zhuǎn)子磁場定向旋轉(zhuǎn)變換,等效成同步旋轉(zhuǎn)坐標(biāo)系下的直流電流Im1、It1(lm1相當(dāng)于直流電動機(jī)的勵磁電流,lt1相當(dāng)于與轉(zhuǎn)矩成正比的電樞電流),然后模仿直流電動機(jī)的控制方法,求得直流電動機(jī)的控制量,經(jīng)過相應(yīng)的坐標(biāo)反變換,實現(xiàn)對異步電動機(jī)的控制。其實質(zhì)是將交流電動機(jī)等效為直流電動機(jī),分別對速度,磁場兩個分量進(jìn)行立控制。通過控制轉(zhuǎn)子磁鏈,然后分解定子電流而獲得轉(zhuǎn)矩和磁場兩個分量,經(jīng)坐標(biāo)變換,實現(xiàn)正交或解糟控制。矢量控制方法的提出具有劃時代的意義。然而在實際應(yīng)用中,由于轉(zhuǎn)子磁鏈難以準(zhǔn)確觀測,系統(tǒng)特性受電動機(jī)參數(shù)的影響較大,且在等效直流電動機(jī)控制過程中所用矢量旋轉(zhuǎn)變換較復(fù)雜,使得實際的控制效果難

直接轉(zhuǎn)矩控制(DTC)方式
1985年,德國魯爾大學(xué)的DePenbrock教授提出了直接轉(zhuǎn)矩控制變頻技術(shù)。該技術(shù)已成功地應(yīng)用在該技術(shù)在很大程度上解決了上述矢量控制的不足,并以新穎的控制思想、簡潔明了的系統(tǒng)結(jié)構(gòu)、優(yōu)良的動靜態(tài)性能得到了迅速發(fā)展。電力機(jī)車牽引的大功率交流傳動上。直接轉(zhuǎn)矩控制直接在定子坐標(biāo)系下分析交流電動機(jī)的數(shù)學(xué)模型,控制電動機(jī)的磁鏈和轉(zhuǎn)矩。它不需要將交流電動機(jī)等效為直流電動機(jī),因而省去了矢量旋轉(zhuǎn)變換中的許多復(fù)雜計算,它不需要模仿直流電動機(jī)的控制,也不需要為解耦而簡化交流電動機(jī)的數(shù)學(xué)模型。矩陣式交一交控制方式

VVVF變頻、矢量控制變頻、直接轉(zhuǎn)矩控制變頻都是交一直一交變頻中的一種。其共同缺點是輸入功率因數(shù)低,諧波電流大,直流電路需要大的儲能電容,再生能量又不能反饋回電網(wǎng),即不能進(jìn)行四象限運(yùn)行。為此,短陣式交一交變頻應(yīng)運(yùn)而生。由于矩陣式交一交變頻省去了中間直流環(huán)節(jié),從而省去了體積大、價格貴的電解電容。它能實現(xiàn)功率因數(shù)為1,輸入電流為正弦且能四象限運(yùn)行,系統(tǒng)的功率密度大。該技術(shù)雖尚未成熟,但仍吸引著眾多的學(xué)者深入研究。其實質(zhì)不是間接的控制電流、磁鏈等量,而是把轉(zhuǎn)矩直接作為被控制量來實現(xiàn)的。具體方法是:
1、控制定子磁鏈引入定子磁鏈觀測器,實現(xiàn)無速度傳感器方式
2、自動識別(ID)依靠的電機(jī)數(shù)學(xué)模型,對電機(jī)參數(shù)自動識別;3、算出實際值對應(yīng)定子阻抗、互感、磁飽和因素、慣量等算出實際的轉(zhuǎn)矩、定子碰鏈、轉(zhuǎn)子速度進(jìn)行實時控制4、實現(xiàn)Band-Band控制按磁鏈和轉(zhuǎn)矩的Band-Band控制產(chǎn)生PWM信號,對逆變器開關(guān)狀態(tài)進(jìn)行控制。矩陣式交一交變頻具有快速的轉(zhuǎn)矩響應(yīng)(<2ms),很高的速度精度(+2%,無PG反饋,高轉(zhuǎn)短精度(<+3%),同時還具有較高的起動轉(zhuǎn)矩及高轉(zhuǎn)矩精度,尤其在低速時(包括0速度時),可輸出150%~ 200%轉(zhuǎn)矩

1C31181G01 壓力飛輪

Vector control (VC) mode
The method of vector control variable frequency speed regulation is to convert the stator current la, lb, lc in the three-phase coordinate system into the AC current la1lb1 in the two-phase static upper coordinate system through the three-phase two-phase transformation, and then transform by directional rotation according to the rotor magnetic field. It is equivalent to the DC current Im1 and It1 in the synchronous rotating coordinate system (lm1 is equivalent to the excitation current of the DC motor, lt1 is equivalent to the armature current proportional to the torque), and then the control quantity of the DC motor is obtained by imitating the control method of the DC motor, and the control of the asynchronous motor is realized through the corresponding inverse transformation of coordinates. In essence, the AC motor is equivalent to the DC motor, and the two components of speed and magnetic field are respectively controlled vertically. By controlling the rotor flux linkage and then decomposing the stator current, two components of torque and magnetic field are obtained. The proposed vector control method has epoch-making significance. However, in practical application, because the rotor flux is difficult to accurately observe, the system characteristics are greatly affected by the motor parameters, and the vector rotation transformation used in the control process of the equivalent DC motor is complicated, which makes the actual control effect difficult

Direct torque control (DTC) mode
In 1985, Professor DePenbrock of Ruhr University in Germany proposed the direct torque control frequency conversion technology. This technology has solved the shortcomings of vector control to a large extent, and has been rapidly developed with novel control ideas, concise system structure and excellent dynamic and static performance. This technology has been successfully applied to the high-power AC drive of electric locomotive traction. Direct torque control analyzes the mathematical model of AC motor directly in the stator coordinate system, and controls the flux and torque of the motor. It does not need to equivalent the AC motor to the DC motor, thus eliminating many complex calculations in the vector rotation transformation, it does not need to imitate the control of the DC motor, and does not need to simplify the mathematical model of the AC motor for decoupling. Matrix crossover control
VVVF frequency conversion, vector control frequency conversion and direct torque control frequency conversion are all one of the AC frequency conversion. The common disadvantage is that the input power factor is low, the harmonic current is large, the direct current circuit requires a large energy storage capacitor, and the regenerative energy can not be fed back to the grid, that is, it can not carry out four-quadrant operation. For this reason, short-formation AC-AC frequency conversion came into being. Because the matrix AC-AC frequency conversion eliminates the intermediate DC link, the large and expensive electrolytic capacitor is eliminated. It can realize power factor of 1, input current of sinusoidal and four-quadrant operation, the power density of the system is large. Although the technology is not yet mature, it still attracts many scholars to further study. Its essence is not indirect control current, flux equal, but the torque directly as the controlled quantity to achieve. The specific methods are:
1. The control stator flux is introduced into the stator flux observer to realize the speed sensorless mode
2, automatic identification (ID) depends on the motor mathematical model, automatic identification of motor parameters; 3. Calculate the actual value corresponding to the stator impedance, mutual inductance, magnetic saturation factor, inertia, etc. Calculate the actual torque, stator chain, rotor speed for real-time control. 4. Realize Band-Band control to generate PWM signal according to the Band-Band control of the flux link and torque, and control the switching state of the inverter. Matrix AC-AC frequency conversion has fast torque response (<2ms), high speed accuracy (+2%, no PG feedback, high short-turn accuracy (<+3%), but also has high starting torque and high torque accuracy, especially at low speed (including 0 speed), can output 150%~ 200% torque

公司介紹:
成都陽光不斷創(chuàng)新致力于提升停產(chǎn)的自動化零件供應(yīng)水平,無論客戶身處何地,無論所需配件多么稀有,我們總能將客戶與所需產(chǎn)品緊密連接 ,成都陽光零部件覆蓋廣泛。
急切需要自動化或控制零件? 全新、Used和已停產(chǎn)的自動化機(jī)械零件的全球供應(yīng)商。
客戶支持快速響應(yīng)
合作伙伴網(wǎng)絡(luò)橫跨各個大洲
全球合作伙伴網(wǎng)絡(luò)




Company Introduction:
Chengdu Sunshine Xihe Co., Ltd. specializes in one-stop procurement consulting for imported industrial spare parts, offering original equipment and professional discontinued parts services. We are committed to providing efficient and reliable automation solutions for our customers. Customer support fast responseThe network of partners spans all continentsGlobal partner networkAlways achieve more delivery, be it parts, service or speed



始終實現(xiàn)更多的交付,無論是零件、服務(wù)還是速度